The relationship between vertical leg stiffness and gross mechanical efficiency in cyclists
Abstract
Background: Professional cyclists have been shown to have a mechanical efficiency that is 11% higher compared to amateur cyclists (Coyle et al. 1991: Med Sci Sports Exerc, 23 (1), 93-107). The variations in power between professional and amateur cyclists are associated with a greater torque development at the first phase of the pedal revolution (Coyle et al. 1991). It has also been shown in cyclists that a relationship exists between vertical leg stiffness and the peak power output (PPO) (r = 0.75, p < 0.01) achieved during a 30 s Wingate test (Pitchers et al. 2013: The relationship of vertical leg stiffness, peak power output and V̇O2max in recreationally active cyclists: identification of the interface between human and bike. 9th Annual Conference of the United Kingdom Strength & Conditioning Association, Nottingham, UK). Vertical leg stiffness may be important to cycling performance as the majority of the force produced is vertical and optimisation of the stretch shortening cycle may limit energy wastage during the propulsive phase (So et al. 2005: Phys Ther Sports, 6, 89-96; Fonda & Sarabon 2010: Sport Sci Rev, 19 (1), 187-210). The relationship between vertical leg stiffness and mechanical efficiency during cycling has yet to be examined.Purpose: To assess the relationship between vertical leg stiffness and gross mechanical efficiency (GE) in cycling.
Methods: In a single group, within subjects design, 11 recreationally active male cyclists (age 34 ± 6 y, V̇O2max 57.4 ± 7.5 ml∙kg∙min-1, body mass 81 ± 1.2 kg, stature 1.81 ± 0.06 m) completed two testing sessions, with a minimum of 48 hr rest between each session. In the first testing session participants completed a stiffness familiarisation before an incremental cycle test to establish V̇O2max. At the second session participants completed 20 sub-maximal bilateral hops at a frequency of 2.3 Hz. This was followed by three 8 min sub-maximal cycling bouts at 50, 55 and 60 % of the participants’ individual maximal minute power (MMP) to establish GE (Table I).
Results: Mean values for GE and vertical leg stiffness were 19.0 ± 1.4 % and 34.1 ± 9.0 kN∙m-1, respectively. Pearson’s correlation coefficient revealed no relationship between vertical leg stiffness and GE (r = -0.07, p = 0.85).
Discussion: The main finding is that in recreationally active male cyclists there is no relationship between vertical leg stiffness and GE. In this group these findings indicate that GE is likely influenced more by other biological systems rather than the mechanical properties of the musculoskeletal system. However, these data may not be reflective of an elite sample where higher leg stiffness might be more likely to influence GE at higher power outputs.
Conclusion: Whilst vertical leg stiffness has been shown to have a strong relationship with PPO (Pitchers et al 2013) in recreational cyclists, this is not the case for GE. Further work is needed to establish if this is also the case in an elite population.
Downloads
Published
How to Cite
Issue
Section
Copyright (c) 2014 Journal of Science and Cycling
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to Journal of Science and Cycling agree to publish their articles under a Creative Commons CC BY-NC-ND license, allowing third parties to copy and redistribute the material in any medium or format, and to remix, transform, and build upon the material, for any purpose, even commercially, under the condition that appropriate credit is given, that a link to the license is provided, and that you indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Authors retain copyright of their work, with first publication rights granted to Cycling Research Center.