Journal of Science & Cycling Breakthroughs in Cycling & Triathlon Sciences

Scoping review Road cycling and bone health: a scoping review

Mairead Short 1, Neil Heron 2, 3 Mark Matthews 4

- ¹ General Practice
- ² General Practice/Centre for Public Health, Queen's University Belfast, Belfast, UK
- ³ Department of General Practice, Keele University, Keele, Staffordshire, United Kingdom
- ^{4.} School of Sport, University of Ulster, Jordanstown, United Kingdom

Correspondence: Mark Matthews. m.matthews@ulster.ac.uk and Neil Heron. N.Heron@qub.ac.uk

Received: 17 February 2022; Accepted: 25 November 2022; Published: 31 December 2022

Abstract:

Introduction: In competitive road cycling, low body mass is a common focus for many athletes. Due to the high energy expenditure and non-weight bearing nature of competitive road cycling, there are associated health risks including relative energy deficiency and low bone mineral density. Untreated, this can lead to an increased susceptibility to fracture. This can be a particular problem in competitive road cycling where the prevalence of falls is high. Methods: A scientific literature search on studies investigating relative energy deficiency and bone mineral density in the sport of road cycling was performed. Results: Twenty-four studies investigated the relationship between road cycling and relative energy deficiency, bone mineral density, bone structure, calcium and vitamin D, markers for bone metabolism and strength training. Road cyclists were generally found to be at risk of relative energy deficiency and reduced bone mineral density. However, bone strength indices on peripheral quantitative computed tomography were not reduced. There was also conflicting evidence on the effect of consuming calcium and vitamin D on markers for bone metabolism and bone mineral density. Studies supported evidence that the inclusion of strength training can have a positive effect on bone mineral density in road cyclists. Discussion: Relative energy deficiency in road cyclists is particularly concerning due to its detrimental impact on bone health and general increased risk of injury. Similarly, low bone mineral density is worrying due to high prevalence of falls and subsequent fracture risk. While it remains to be seen whether calcium and vitamin D supplementation provide adequate bone protection, increased education among competitive road cyclists on the benefits of energy balance and strength training in terms of bone health could be useful and should be advocated by their support team. Conclusion: There was evidence of increased risk of relative energy deficiency, low bone mineral density and increased bone resorption in road cyclists. However, there was also evidence that strength and impact training could improve bone health in competitive road cyclists.

Keywords: relative energy deficiency (RED-S), osteoporosis, bone, bone mineral density (BMD), road cycling, cyclist

1. Introduction

Despite the clear overall health benefits associated with engaging in regular road cycling, competitive cycling has been associated with low bone mineral density (BMD) (Abe et al. 2014; Guillaume et al. 2012; Mojock et al. 2015; Nichols & Rauh, 2011; Olmedillas et al. 2011). Bone is dynamic and constantly remodelled is by two counteracting metabolic forces - formation and resorption (Mathis & Caputo, 2018). Bone metabolism is a multifaceted process, including biological and environmental when factors and these factors are imbalanced, negative skeletal adaptions can occur (Baker & Reiser, 2017). Bone is remodelled in response to the strain placed upon it, and strain below a minimum threshold will cause bone resorption (Mcveigh et al. 2015). Weight-bearing activities consistently result in greater BMD than non-weight-bearing activities. Competitive cycling, therefore, with its minimal external loading on areas such as hip, pelvis, and lumbar spine, has consistently been labelled a non-osteogenic sport (Baker & Reiser, 2017).

Mineral deficiencies dietary and restrictions may also exacerbate the issue of low BMD. Competitive cycling and training at elite level requires a high workload over a prolonged period, which may disrupt calcium homeostasis (Baker & Reiser, 2017). Many competitive cyclists are also at risk of relative energy deficiency in sport (RED-S), which has been linked to loss of skeletal mass (Torstveit et al. 2018). This can occur in part due to weight loss practices to maintain a low race weight for competitive advantage (by improving power to weight ratio), and high energy expenditure associated with large volumes of training and racing (Haakonssen et al. 2015). Untreated, low BMD may lead to increased susceptibility to fracture (Mathis & Caputo, 2018). This makes low BMD in cyclists particularly troubling because of the high prevalence of falls and subsequent vulnerability to fracture.

A search of the literature found that cycling does not appear to confer any significant osteogenic benefit, and further research on bone metabolism, bone strength and structure in cyclists has been recommended (Olmedillas et al. 2012). The aim of this scoping review is to summarise the existing available literature regarding bone mass, bone metabolism and energy availability in competitive road cyclists, make recommendations on how this could be applied to current practices, and identify gaps in the research warranting further study.

2. Materials and Methods

A search was carried out using the online database PubMed in October 2021. The search strategy to identify appropriate articles was ("relative energy deficiency" OR "RED-S" OR "osteoporosis" OR "bone" OR "BMD") AND ("road cycling" OR "cyclist"). These results were filtered to include studies published in the last 10 years and written in English. This revealed 152 results. The inclusion criteria were that BMD or RED-S in road cycling had to be the primary area of subject focus in each study. A total of 217 citations were excluded for the following reasons: (a) 71 studies did not include BMD or RED-S or road cycling; (b) 43 studies included road cycling but did not address the impact on BMD or RED-S as the main subject; (c) 14 studies included BMD or RED-S but this was not addressed in the context of the sport of road cycling.

3. Results

Twenty-four studies involving 858 participants were included, from youth to master categories (14 – 71yrs). Amateur to professional level cyclists were involved in the studies, with a variety of comparison groups utilized (sedentary, high impact or weightbearing). (Table 1)

Table 1. Studies

Study,	Number of	Condor	Age			
Study	Participants	Gender	Range	Mean (SD)		
Abe et al. (2014)	27	Mala	Master 53-71	Master 61(6)		
	27	Male	Young 20-30	Young 23(4)		
Balton & Poison (2017)	42	Male	18 40	Male 32.9 (9.6)		
Daker & Keiser (2017)	42	Female	10-49	Female 29.4 (6.7)		
Corsetti et al. (2015)	9	Male		28.8 (3.6)		
Grasso et al. (2013)	9	Male		28.8 (3.6)		
Guillaume et al. (2012)	29	Male		26.5 (5.3)		
Haakonssen et al. (2015)	32	Female	17-32	24.3 (4.1)		
Hoon et al. (2019)	97	Male		32.0 (1.7)		
Lane et al. (2019)	108	Male		38.6 (13.8)		
Lombardi et al. (2014)	9	Male		26.7 (2.5)		
Lombardi et al. (2012)	76	Male				
		Female				
Mathis & Caputo (2018)	40	Male	31-69	42.7 (9.4)		
Mathis et al. (2015)	17	Male		42.7 (9.4)		
				Road Cyclists 22.9 (3.4)		
Mcveigh et al. (2015)	30	Male	18-34	Mountain bikers 26.0 (5.8)		
				Controls 26.9 (5.5)		
Mojock et al. (2015)	28	Male	21-54			
Nichols & Rauh (2011)	37	Male	40-60	Master cyclists 50.7 (4.0)		
				Controls 50.7 (4.1)		
Olmedillas et al. (2011)	44	Male		Cyclists 16.9 (1.9)		
				Controls 16.7 (2.1)		
Olmedillas et al. (2018)	42	Male	14-20	Cyclists 17.3 (0.9)		
	10			Controls 18.0 (2.3)		
Oosthuyse et al. (2014)	10	Male		29.6 (11.1)		
				Road cyclists $22.9(3.4)$		
	50			Runners 25.0 (2.7)		
Oosthuyse et al. (2017)	52	Male		Mountain bikers $26.0(5.8)$		
				Swimmers 21.8 (2.3)		
				$\frac{1}{1}$		
\mathbf{D} right \mathbf{r} at \mathbf{r} (2012)	20		10 50	Vibration group cyclists 44.0 (9.6)		
Prioreschi et al. (2012)	30		19-39	Control group cyclists 38.7 (5.7)		
$\mathbf{Chort}_{cont} \rightarrow \mathbf{a} 1 (2014)$	14	Female	26 41	24.0.(4.8)		
$\frac{\text{Sherk et al. (2014)}}{\text{Sherk et al. (2017)}}$	14	remale	20-41	34.7 (4.0)		
Sherk et al. (2017)	51	Male	18-45	Placebo group 26.8 (8.0)		
To return it at a1 (2018)	21	Mala	18 50	34 7 (9 1)		
1015tven et al. (2010)	51	Mala	10-30	34.7 (0.1) Mala 42.0 (7.7)		
Viner et al. (2015)	10	Formala	29-49	$E_{\text{comple}} = 28.4 (10.2)$		
		гепае		remaie 58.4 (10.5)		

Each study was independently evaluated and information about the number of participants, level of competition, type of data, and characteristics such as age and gender collected. Results were then assessed and recorded. (Supplementary Table 2).

Relative Energy Deficiency in Sport (RED-S)

Three studies involving 149 participants addressed RED-S, and all found significant risk of low energy availability in cyclists (Lane et al. 2019; Torstveit et al. 2018; Viner et al. 2015). This was thought to be due partly to high energy demands and eating disorders, or disordered eating to maintain a low body weight (Lane et al. 2019). One study also reported that cyclists were highly weight conscious and engaged in a variety of practices to reduce weight, which may be harmful to bone health (Hoon et al. 2019).

Changes in Bone Mineral Density (BMD) on Dual X-ray Absorptiometry (DXA)

Fourteen studies used dual x-ray absorptiometry (DXA) as a means of assessing bone density. Lower BMD was found in the femoral neck, hip, pelvis, and lumbar spine in cyclists compared to controls (Abe et al. 2014; Guillaume et al. 2012; Mojock et al. 2015; Nichols & Rauh, 2011; Olmedillas et al. 2011). Trained cyclists were also more likely to meet criteria for osteopenia or osteoporosis (Mojock et al. 2015; Nichols & Rauh, 2011). Three studies reported evidence that BMD in cyclists reduced with training and competing over 5 months (Mathis et al. 2015), 12 months (Sherk et al. 2014), and 7 years (Nichols & Rauh, 2011) respectively. One study, however, found no change in BMD in cyclists over 6 months (Baker & Reiser, 2017).

Bone Geometry and Structure

Peripheral	quantitativ	re	computed
tomography	(pQCT)	offers	three-

dimensional imaging, evaluating bone size, strength, and geometry. Mcveigh et al. (2015) found higher radii strength indices and greater cortical area and thickness in road cyclists compared to controls. However, in a study by Oosthuyse et al. (2017), the radial and tibial indices of road cyclists were not found to be any greater when compared to athletes from other disciplines and controls. These findings support the focus on bone size, strength and mineral density of the femur and lumbar spine in cycling populations.

Calcium and Vitamin D Supplementation

Three studies looked at the effect of calcium and vitamin D intake with conflicting results. Haakonssen et al. (2015) found that eating a calcium rich meal pre-exercise attenuated an exercise-induced rise in markers of bone resorption, but Sherk et al. (2017) found it made no difference. Mathis et al. (2015) also found no difference in BMD loss over a season when taking calcium and vitamin D supplements. Thus, the evidence for supplementing road cyclists with calcium and vitamin D to maintain bone health is limited.

Bone Turnover Markers

Seven studies investigated the impact of road cycling on markers of bone metabolism in serum, sweat and urine samples. Many noted an increase in markers for bone resorption, which could negatively impact bone health (Corsetti et al. 2015; Grasso et al. 2013; Lombardi et al. 2012; Mcveigh et al. 2015; Olmedillas et al. 2018; Oosthuyse et al. 2014). However, Guillaume et al. (2012) found that biochemical markers of bone metabolism and parameters of calcium homeostasis were in the normal range. Oosthuyse et al. (2017) found no significant difference in bone ALP and CTX between road cyclists and controls and athletes from other disciplines. Additionally, in their study on how the Giro d'Italia impacted serum concentrations of calcium and phosphate, Lombardi et al. (2014) concluded that an

increase in fibroblast growth factor 23 (FGF23) may be aimed at maintaining calcium and phosphorus homeostasis, yet they did not note any imbalance in bone turnover.

Strength Training

Four studies reported higher bone mineral density associated with self-reported strength training (Mathis & Caputo, 2018; Nichols & Rauh, 2011) and impact exercise (Nichols & Rauh, 2011) and three times per whole-body vibration training week (Prioreschi et al. 2012). One study noted engagement in strength training was highest in international level cyclists. (Hoon etal. 2019) Common reasons for not participating in strength training were time constraints, beliefs that time would be better spent riding, and it wouldn't improve performance or weight gain would decrease cycle performance (Hoon et al. 2019).

4. Discussion

This review found a vulnerability to relative energy deficiency (RED-S) in competitive Importantly within sport, road cyclists. athletes experiencing RED-S are thought to be more likely to have an increased risk of injury and decreased athletic performance (Lane et al. 2019). Within the context of this review, this is especially concerning as RED-S has also been linked to low skeletal bone mass (Torstveit et al. 2018). However, if cyclists can remain in energy balance, bone mass may be better protected (Baker & Reiser, 2017). Additionally, improved bone health can be achieved through engaging in weight-bearing strength activities and potentially supplementing diet with calcium and vitamin D.

In cyclists, low BMD on DXA showed up consistently in studies and this is concerning as it may increase susceptibility to fracture. This is particularly important because fractures appear to be relatively frequent injuries in top-level cyclists and almost all of these are caused by falls (De Bernardo et al. 2012; Haeberle et al. 2018; Rooney et al. 2020). In a study by Rooney et al. (2020), fractures were the second commonest injury and resulted in a high number of days lost to injury, not to mention the long-term impact of these fractures on the riders' morbidity. De Bernardo et al. (2012) also found that 64% of fractures occurred in competition, where group falls are particularly difficult to prevent due to the proximity of riders. Strikingly, an 8-year study on withdrawals from the Tour de France found that 49% were due to fractures, representing the most common reason for withdrawal (Haeberle et al. 2018).

In terms of the impact of road cycling on bone turnover, many of the studies noted an increase in markers of bone resorption, which could potentially negatively impact bone health. However, it is unclear whether this causes a reduction in bone mass. This negative impact of cycling on bone health could potentially be ameliorated using weight-bearing strength exercises as well as foot vibration plates. The greatest barriers to such training, however, were time constraints, negatively impacted body image and the belief that it didn't benefit performance. Thus, when prescribing strength-based activities to road cyclists these barriers must be addressed to promote better adherence to the strength exercise prescription. Indeed, in their review on optimising strength training for endurance performance Rønnestad & Mujika (2013) concluded that strength training can be successfully prescribed to enhance endurance performance in highly trained athletes. Furthermore, no negative effects were reported following the addition of strength training to an endurance training program in their review.

5. Practical Applications.

From this scoping review, road cyclists are at high risk of low bone mineral density, which

can present with frequent low trauma fractures. To improve bone health in road cvclists, we would suggest regular monitoring of bone health via a DXA scan (e.g., annually). They should also aim for at least the recommended daily intake of calcium (700-1000mg) and if this is not possible, supplement their diets with 400-600mg of calcium ("Osteoporosis and diet", 2021) and 10 micrograms (400 international units) of vitamin D ("Osteoporosis and diet", 2021; "Vitamin D deficiency in adults treatment and prevention", 2020).

Additionally, we would encourage the riders to have 2-3 weight-bearing strength training sessions per week, including the use of foot vibration plates. However, compliance needs to be improved by addressing the common barriers which road cyclists report to engaging in strength training. These barriers include time constraints and the false belief that strength training negatively impacts performance (Rønnestad & Mujika, 2013). Further research would therefore be helpful to determine the minimal strength training dose required to affect bone mineral density and the impact of strength training on body composition. Bone health in road cyclists should be addressed through a multidisciplinary team of nutrition, coaching, strength, and conditioning (specific to road cycling) and sports medicine.

A limitation of this study is that it is a scoping review in one medical database. A systematic review, including further scientific databases and the grey literature, should be undertaken in this area. Studies included also have low numbers of participants, and some are not comparable to competitive road cyclists in age, training time etc. This reflects a lack of relevant data for this cohort, and a prospective study on bone health in elite cyclists may be of benefit to update the research. Additionally, these studies focus on participants currently involved in road cycling. Further research is also recommended to assess the reversibility of bony changes in road cyclists

6. Conclusions

This scoping review has shown that road cyclists are at high risk of having low bone mineral density and therefore, a high risk of fractures. Elite cyclists were found to be prone to relative energy deficiency, either due to high energy expenditure or deliberately reducing food intake as a means of weight control. Bone health in road cyclists can be improved with strength-based and whole-body vibration training activities as well as supplementing the diet with calcium and vitamin D. Further research needs to be conducted into the bone health of road cyclists, highlighting osteopenia and osteoporosis as real medical risks in this cohort of athletes, and investigating realworld strategies to address this.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

- Abe, T., Nahar, V., Young, K., Patterson, K., Stover, C., & Lajza, D. et al. (2014). Skeletal Muscle Mass, Bone Mineral Density, and Walking Performance in Masters Cyclists. Rejuvenation Research, 17(3), 291-296. doi: 10.1089/rej.2013.1538
- Baker, B., & Reiser, R. (2017). Longitudinal Assessment of Bone Mineral Density and Body Composition in Competitive Cyclists. Journal of Strength and Conditioning Research, 31(11), 2969-2976. doi: 10.1519/jsc.00000000002128
- Corsetti, R., Perego, S., Sansoni, V., Xu, J., Barassi, A., Banfi, G., & Lombardi, G. (2015). Osteocartilaginous metabolic markers change over a 3-week stage race in procyclists. Scandinavian Journal of Clinical and Laboratory Investigation, 75(6), 523-530. doi: 10.3109/00365513.2015.1057762
- De Bernardo, N., Barrios, C., Vera, P., Laíz, C., & Hadala, M. (2012). Incidence and risk for traumatic and overuse injuries in toplevel road cyclists. Journal of Sports Sciences,

30(10), 1047-1053. doi: 10.1080/02640414.2012.687112

- Grasso, D., Corsetti, R., Lanteri, P., Di Bernardo, C., Colombini, A., & Graziani, R. et al. (2013). Bone-muscle unit activity, salivary steroid hormones profile, and physical effort over a 3-week stage race. Scandinavian Journal of Medicine & Science In Sports, 25(1), 70-80. doi: 10.1111/sms.12147
- Guillaume, G., Chappard, D., & Audran, M. (2012). Evaluation of the Bone Status in High-Level Cyclists. Journal of Clinical Densitometry, 15(1), 103-107. doi: 10.1016/j.jocd.2011.08.001
- Haakonssen, E., Ross, M., Knight, E., Cato, L., Nana, A., & Wluka, A. et al. (2015). The Effects of a Calcium-Rich Pre-Exercise Meal on Biomarkers of Calcium Homeostasis in Competitive Female Cyclists: A Randomised Crossover Trial. PLOS ONE, 10(5), e0123302. doi: 10.1371/journal.pone.0123302
- Haeberle, H., Navarro, S., Power, E., Schickendantz, M., Farrow, L., & Ramkumar, P. (2018). Prevalence and Epidemiology of Injuries among Elite Cyclists in the Tour de France. Orthopaedic Journal of Sports Medicine, 6(9), 232596711879339. doi: 10.1177/2325967118793392
- Hoon, M., Haakonssen, E., Menaspà, P., & Burke, L. (2019). Racing weight and resistance training: perceptions and practices in trained male cyclists. The Physician and Sportsmedicine, 47(4), 421-426. doi: 10.1080/00913847.2019.1607602
- Lane, A., Hackney, A., Smith-Ryan, A., Kucera, K., Registar-Mihalik, J., & Ondrak, K. (2019). Prevalence of Low Energy Availability in Competitively Trained Male Endurance Athletes. Medicina, 55(10), 665. doi: 10.3390/medicina55100665
- Lombardi, G., Corsetti, R., Lanteri, P., Grasso, D., Vianello, E., & Marazzi, M. et al. (2014). Reciprocal regulation of calcium-/phosphate-regulating hormones in cyclists during the Giro d'Italia3-week stage race. Scandinavian Journal of Medicine & Science in Sports, 24(5), 779-787. doi: 10.1111/sms.12080
- 12. Lombardi, G., Lanteri, P., Colombini, A., Mariotti, M., & Banfi, G. (2012). Sclerostin

concentrations in athletes: role of load and gender. Journal of Biological Regulators and Homeostatic Agents, 26(1), 157-163.

- Mathis, S., & Caputo, J. (2018). Resistance Training Is Associated With Higher Lumbar Spine and Hip Bone Mineral Density in Competitive Male Cyclists. Journal of Strength and Conditioning Research, 32(1), 274-279. doi: 10.1519/jsc.00000000002209
- Mathis, S., Farley, R., Fuller, D., Jetton, A., Ishikawa, S., & Caputo, J. (2015). Effects of a calcium supplement on bone mineral density in male cyclists. The Journal of Sports Medicine and Physical Fitness, 55(9), 940-945.
- Mcveigh, J., Meiring, R., Cimato, A., Micklesfield, L., & Oosthuyse, T. (2015). Radial bone size and strength indices in male road cyclists, mountain bikers and controls. European Journal of Sport Science, 15(4), 332-340. doi: 10.1080/17461391.2014.933881
- Mojock, C., Ormsbee, M., Kim, J., Arjmandi, B., Louw, G., Contreras, R., & Panton, L. (2015). Comparisons of Bone Mineral Density between Recreational and Trained Male Road Cyclists. Medicine & Science in Sports & Exercise, 47(5S), 619. doi: 10.1249/01.mss.0000478402.09084.c8
- Nichols, J., & Rauh, M. (2011). Longitudinal Changes in Bone Mineral Density in Male Master Cyclists and Nonathletes. Journal of Strength and Conditioning Research, 25(3), 727-734. doi: 10.1519/jsc.0b013e3181c6a116
- Olmedillas, H., González-Agüero, A., Moreno, L., Casajús, J., & Vicente-Rodríguez, G. (2011). Bone Related Health Status in Adolescent Cyclists. Plos ONE, 6(9), e24841. doi: 10.1371/journal.pone.0024841
- Olmedillas, H., González-Agüero, A., Moreno, L., Casajus, J., & Vicente-Rodríguez, G. (2012). Cycling and bone health: a systematic review. BMC Medicine, 10(1). doi: 10.1186/1741-7015-10-168
- Olmedillas, H., Gonzalez-Agüero, A., Rapún-López, M., Gracia-Marco, L., Gomez-Cabello, A., & Pradas de la Fuente, F. et al. (2018). Bone metabolism markers and vitamin D in adolescent cyclists. Archives Of Osteoporosis, 13(1). doi: 10.1007/s11657-018-0415-y

- Oosthuyse, T., Badenhorst, M., & Avidon, I. (2014). Bone resorption is suppressed immediately after the third and fourth days of multiday cycling but persistently increased following overnight recovery. Applied Physiology, Nutrition, And Metabolism, 39(1), 64-73. doi: 10.1139/apnm-2013-0105
- Oosthuyse, T., McVeigh, J., Micklesfield, L., & Meiring, R. (2017). Radial and tibial bone indices in athletes participating in different endurance sports: a pQCT study. European Journal of Sport Science, 17(2), 231-240. doi: 10.1080/17461391.2016.1219770
- 23. Osteoporosis and diet. (2021). Retrieved 15 October 2021, from https://www.bda.uk.com/resource/osteopor osis-diet.html
- Prioreschi, A., Oosthuyse, T., Avidon, I., & McVeigh, J. (2012). Whole Body Vibration Increases Hip Bone Mineral Density in Road Cyclists. International Journal of Sports Medicine, 33(08), 593-599. doi: 10.1055/s-0032-1301886
- Rønnestad, B., & Mujika, I. (2013). Optimizing strength training for running and cycling endurance performance: A review. Scandinavian Journal of Medicine & Science in Sports, 24(4), 603-612. doi: 10.1111/sms.12104
- Rooney, D., Sarriegui, I., & Heron, N. (2020).
 'As easy as riding a bike': a systematic review of injuries and illness in road cycling.
 BMJ Open Sport & Exercise Medicine, 6(1), e000840. doi: 10.1136/bmjsem-2020-000840
- Sherk, V., Barry, D., Villalon, K., Hansen, K., Wolfe, P., & Kohrt, W. (2014). Bone Loss Over 1 Year of Training and Competition in Female Cyclists. Clinical Journal Of Sport Medicine, 24(4), 331-336. doi: 10.1097/jsm.000000000000050
- Sherk, V., Wherry, S., Barry, D., Shea, K., Wolfe, P., & Kohrt, W. (2017). Calcium Supplementation Attenuates Disruptions in Calcium Homeostasis during Exercise. Medicine & Science in Sports & Exercise, 49(7), 1437-1442. doi: 10.1249/mss.00000000001239
- 29. Torstveit, M., Fahrenholtz, I., Stenqvist, T., Sylta, Ø., & Melin, A. (2018). Within-Day

Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes. International Journal of Sport Nutrition And Exercise Metabolism, 28(4), 419-427. doi: 10.1123/ijsnem.2017-0337

- Viner, R., Harris, M., Berning, J., & Meyer, N. (2015). Energy Availability and Dietary Patterns of Adult Male and Female Competitive Cyclists with Lower Than Expected Bone Mineral Density. International Journal of Sport Nutrition and Exercise Metabolism, 25(6), 594-602. doi: 10.1123/ijsnem.2015-0073.
- 31. Vitamin D deficiency in adults treatment and prevention. (2020). Retrieved 15 October 2021, from <u>https://cks.nice.org.uk/topics/vitamin-d-</u> <u>deficiency-in-adults-treatment-prevention/</u>

Table 2. Results

Reference	Number of participants	Gender	Age Range	Mean Age (SD)	Exercise history	Data collected	Results
Abe et al.	-14 master	-Male	-	-Master 61	-Master cyclists - training 4-5	-DXA	-Lumbar spine BMD - no
(2014)	cyclists		Master	(6)	times per week, ~200 miles per		different between groups
	-13 moderately		53-71	-Young 23	week for on average the last 17		-Femoral neck BMD lower in
	active young men		-	(4)	years (range 7–38 years)		cyclists
			Young		-Moderately active young men -		
			20-30		exercising less than twice a week		
Baker and	-22 male cyclists	-Male	-18-49	-Male 32.9	-USA Cycling Category 1-4	-Health history	-No difference in BMD
Reiser	-20 female cyclists	-Female		(9.6)		-Cycling	between subgroups pre-
(2017)				-Female		questionnaire	season
				29.4 (6.7)		-4-day dietary log	-No significant change in
						-DXA	BMD for any group post-
							season
Corsetti et	-9 cyclists	-Male		-28.8 (3.6)	-Professional cycling team in the	-Bone biomarkers	-Reduction in bone turnover
al. (2015)					95 th Giro d'Italia 2012		rate and depletion of bone
							matrix

Grasso et al.	-9 cyclists	-Male		-28.8 (3.6)	-Professional cycling team in the	-Bone biomarkers	-Urinary excretion of
(2013)					95 th Giro d'Italia 2012		calcium and phosphorous
							increased which could mark
							an increased rate of bone
							resorption sustained by
							increase of sclerostin across
							the race
Guillaume	-29 cyclists	-Male		-26.5 (5.3)	-Professional	-Questionnaire on	-Lumbar spine BMD lower
et al. (2012)						calcium intake	than controls
						-DXA	-Femoral BMD less affected
						-Bone biomarkers	-Biochemical markers of
							bone turnover and
							parameters of calcium
							homeostasis in normal range
Haakonssen	-32 cyclists	-Female	-17-32	-24.3 (4.1)	-25 Australian National Road	-DXA	-Eating a calcium rich pre-
et al. (2015)					Series (NRS) registered cyclists	-Bone biomarkers	exercise meal attenuates the
					with at least 18 months racing		exercise-induced rise in
					experience		markers of bone resorption
					-Additional participants - 1		PTH and CTX
					international professional, 1 ultra-		
					endurance mountain biker, 5		
					National club-level cyclists		

Hoon et al.	-97 cyclists	-Male	-32.0 (1.7)	-Highest local club level (A/B	-Questionnaire	-49% unsatisfied with
(2019)				grade) or higher. Included local,		current bodyweight
				national, and international level		-79% trying to reduce
						bodyweight
						-9% using supplements or
						medications to lower
						bodyweight
						-27% sought health
						professional advice
						-Higher proportion of
						international riders strength
						training (85%), compared to
						national (50%) and club
						(55%)
Lane et al.	-108 competitive	-Male	-38.6 (13.8)	-Training at least 10 hours per	-Survey of diet	-Relatively high prevalence
(2019)	recreationally			week and currently training for a	and training	of being at risk of low energy
	trained			specific endurance event	records	availability
	endurance					- 47.2% at risk
	athletes in					- 19.4% no risk
	running, cycling					-Cyclists at greater risk than
	or triathlon					runners or triathletes

Lombardi et	-9 cyclists	-Male	-26.7 (2.5)	-Professional cycling team,	-Bone biomarkers	-FGF23 increased 50%
al. (2014)				competing in the 94th Giro d'Italia	-Dietary calcium	-Rise in FGF23 may maintain
				2011	and phosphorus	calcium and phosphorus
					-BMI	homeostasis
					-Net energy	
					expenditure	
					-Power output	
Lombardi et	-61 athletes	-Male		- "Elite"	-Bone biomarkers	-Higher sclerostin and bone
al. (2012)	- Weight bearing	-Female				ALP in females
	(15 male rugby					-Sclerostin higher in weight-
	players, 11 male					bearing than in non-weight-
	enduro-racers, 8					bearing disciplines in males
	female basketball					-Significant inverse age-
	players)					related correlation
	- High impact (6					-Applied load increased
	male tennis					marker concentrations,
	players, 8 female					testifying a high bone
	ice skaters)					turnover rate
	- Non-weight					-Gender effect evident
	bearing (13 male					
	cyclists)					
	16 sedentary					
	controls					

Mathis and	-40 cyclists	-Male	-31-69	-42.7 (9.4)	-State, regional, and national	-Questionnaire	-Weight training associated
Caputo,					competitors (including 1 former	-DXA	with higher BMD of the
(2018)					Olympian)		lumbar spine, total hip,
					-Older than 30 years, "trained		femoral neck, and femoral
					regularly" and at least 2 years of		trochanter
					cycle-specific experience		
Mathis et al.	-17 cyclists	-Male		-42.7 (9.4)		-DXA	-Femoral trochanter BMD
(2015)							significantly decreased
							during 5-month season
							-No difference in BMD
							between cyclists who took a
							calcium and vitamin D
							supplement and the control
							group

					-		
Mcveigh et	-10 road cyclists	-Male	-18-34	-Road	-Road cyclists trained for distance	-Dietary calcium	-Mountain biker radii
al. (2015)	-10 mountain			cyclists	road racing	-Global Physical	significantly stronger,
	bikers			22.9 (3.4)	-Mountain bikers trained for	Activity	denser, and larger compared
	-10 sedentary			-Mountain	distance mountain bike events	Questionnaire	to road cyclists and controls
	controls			bikers 26.0	-Sedentary controls did ≤2 hours	-BMI	-Road cyclists significantly
				(5.8)	structured physical activity per	-DXA	higher strength indices and
				-Controls	week	-pQCT	greater cortical area and
				26.9 (5.5)		-Bone biomarkers	thickness than controls at the
							radial diaphysis
							-Serum CTX higher in road
							cyclists than mountain
							bikers and above the general
							population age reference
							range
Mojock et	-28 cyclists	-Male	-21-54		-Riding more than 3 hours per	-DXA	-Trained cyclists had lower
al. (2015)					week	-VO2 max	hip BMD bilaterally
						-Training history	-Lumbar scans identified 12
							trained and 4 recreational
							cyclists as osteopenic and 3
							trained cyclists as
							osteoporotic

Nichols and	-19	master	-Male	-40-60	-Master	-Cyclists - Year-round	-Health	-Lower BMD in cyclists
Rauh,	cyclists				cyclists	cycling training consistently for at	questionnaire	compared to nonathletes at
(2011)	-18 contr	ols			50.7 (4.0)	least 10 hours per week, at least	-DXA	all bone sites
					-Controls	150 miles per week, for at least 10	-Calcium intake	-Greater BMD decline in
					50.7 (4.1)	years; and competing in United		cyclists than controls
						States Cycling Federation (USCF)		-If weight training or
						races for a minimum of 10 years		impact exercise since
						-Controls – Nonathletic but active		baseline, significantly less
						and matched to cyclists by age and		BMD lost at spine and
						body weight		femoral neck
								-Significantly greater
								percentage of cyclists than
								nonathletes met criteria for
								osteopenia or osteoporosis
								at baseline
								-6 of the 19 (31.6%) cyclists
								with osteopenia at baseline
								became osteoporotic,
								compared to 1 (5.6%) of the
								nonathletes

Olmedillas	-22 cyclists	-Male		-Cyclists	-Cyclists - regular regional	-Physical activity	-Cyclists had lower BMC
et al. (2011)	-22 age matched			16.9 (1.9)	competitions,	questionnaire	and BMD compared with
	controls			-Controls	training/competitions for a mean	-VO2 max	healthy age-matched
				16.7 (2.1)	of 10 hours per week for 2-7 years	-DXA	controls for the whole body,
					-Controls - recreational sports		pelvis, femoral neck, and
					(rugby, tennis, handball, soccer) 2		legs
					hours a week with occasional		-Differences in BMC and
					match at the weekend but none		BMD between cyclists and
					cycled more than 1 hour per week		controls were higher in
							adolescents over 17 years old
Olmedillas	-22 cyclists	-Male	-14-20	-Cyclists	-Cyclists - Regular regional	-Questionnaire	-Cycling during adolescence
et al. (2018)	-20 age matched			17.3 (0.9)	competitions and mean	-Bone biomarkers	may be associated with a
	controls			-Controls	training/competition load of 10		decrease in bone turnover
				18.0 (2.3)	hours per week		and may affect bone health
					for 2-7 years		later in life
					-Controls - recreational sports for		
					less than 2 hours per week, and		
					occasional matches at the		
					weekend but no one cycled more		
					than 1 hour per week		

Oosthuyse	-10 cyclists	-Male	-29.6 (11.1)	-8.3 ± 4.6 years of cycling	-Sweat calcium	-Persistent increase in
et al. (2014)				experience	excretion during	bone resorptive activity
				-12.7 ± 6.2 hours cycling training	exercise	following overnight
				per week	-Bone biomarkers	recovery during 4 successive
						days of prolonged strenuous
						cycling may be expected
						to have long-term negative
						consequences for bone
						health
Oosthuyse	-10 road cyclists	-Male	-Road	-Athletes from local sports clubs	-Dietary	-No difference in tibial
et al. (2017)	-9 runners		cyclists	training a minimum of 5	questionnaire	indices of road cyclists and
	-10 mountain		22.9 (3.4)	hours/week for at least 2 years	-BMI	mountain bikers compared
	bikers		-Runners	and no other non-sports-specific	-pQCT	to controls
	-13 swimmers		25.0 (2.7)	training	-Bone biomarkers	-No significant difference in
	-10 controls		-Mountain	-Sedentary controls <2		serum bone ALP and CTX
			bikers 26.0	hours/week of exercise		between road cyclists and
			(5.8)			other participants
			-			
			Swimmers			
			21.8 (2.3)			
			-Controls			
			26.9 (5.5)			

Prioreschi et al. (2012)	-8 road cyclists in the vibrating group -7 road cycling controls -15 sedentary controls		-19-59	-Vibration group cyclists 44.0 (9.6) -Control group cyclists 38.7 (5.7) - Sedentary control group 40.8	-Cyclists – road cycling for at least 5 years and for a minimum of 8 hours per week -Sedentary controls – healthy, exercising for less than 2 hours per week	-DXA -Calcium intake questionnaire - Cardiorespiratory exercise test	-Cyclists who had 10 weeks of whole-body vibration training showed significant increase in hip BMD, control cyclists - no change -Cycling control group significantly lower spine BMD compared to baseline, spine BMD preserved in cycling vibration group
Sherk et al. (2014)	-14 cyclists	-Female	-26-41	(9.1) -34.9 (4.8)	-At least 1 year of competition history and intent to compete in 10 or more races in the coming year	-DXA -pQTC	-Bone loss at lumbar spine, total hip, and subtrochanteric region of the hip -No significant trabecular or cortical bone changes in the tibia over 12 months of training

Sherk et al. (2017)	-23 cyclists taking a calcium supplement -28 cyclists taking a placebo	-Male	-18-45	-Calcium group 35.1 (6.5) -Placebo group 36.8 (8.0)	-Competed in road cycling races for at least 1 year with plans to participate in at least 10 more races in the next calendar year	-DXA -Bone biomarkers	-Serum calcium decreased in both calcium-ingesting and placebo groups from before to after exercise but there was a greater decrease in the placebo group -Non-significant attenuation of the increase in PTH by calcium supplementation -No effect of calcium on CTX, which increased in both groups
Torstveit et al. (2018)	-31 cyclists, triathletes, and long-distance runners	-Male	-18-50	-34.7 (8.1)	- "Trained" or "well-trained" and at performance levels 3-4 -Training frequency at least 4 sessions/week during the previous year and competing at a regional or national level	-BMI -DXA -VO2 max -Resting metabolic rate -Resting heart rate -Energy status -Serum glucose, cortisol, testosterone and T3	-65% of subjects had suppressed RMR -Male endurance athletes with suppressed RMR, despite similar energy availability and 24-hour energy balance spent more time in severe energy deficit and had larger single-hour energy deficit compared to those with normal RMR

Viner et al.	-6 male cyclists	-Male	-29-49	-Male 42.0	-USA Cycling Category: Pro, n=2;	-Dietary records	-90% low energy availability
(2015)	-4 female cyclists	-Female		(7.7)	1-4, n=8	-DXA	during at least 1 training
				-Female	-Endurance cyclists (5 road, 5 off-	-Three-Factor	period
				38.4 (10.3)	road)	Eating	-70% low energy availability
						Questionnaire	across the season
							-70% identified as restrained
							eaters who consciously
							restrict energy intake as a
							means of weight control
							-No difference in energy
							availability between male
							and female cyclists and road
							and off-road cyclists