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Abstract 
Forces acting upon a biker, can be expressed in terms of power (in Watts). Such forces are for example (but not limited 
to) air-drag, rolling friction and changes in potential energy (due to gravity, when riding up a hill). Here, the author will 
specifically compare power related to air drag, with that related to cycling up a hill. This allows the author to define the 
Incline-Equivalent Wind Velocity. The Incline-Equivalent Wind Velocity translates a slope of a mountain into a wind 
speed, such that overcoming both forces require the same power. The Incline-Equivalent Wind Velocity can therefore 
be interpreted as the velocity with which the wind has to push a rider such that the rider does not roll down a slope of 
a certain angle, and the net movement is zero. This can be used to recalculate mountain profiles into Incline-Equivalent 
Wind Velocity profiles and can express the effect of drafting in terms of a reduction in wind speed and incline, rather 
than power. 
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Introduction 
Many cyclist have battled against both hills and 
mountains, sometimes simultaneously. As a result, many 
have wondered how cycling up a hill compares to 
cycling against the wind. In addition, many cyclist live 
in areas without mountains, but subject to plenty of wind 
(such as the Netherlands). To understand the effort 
required to ride up a mountain (as for example in a Tour 
de France), it is more intuitive for such cyclists to 
express this effort into a head-wind. In this study, I will 
express the incline of a mountain as a head-wind 
velocity, such that riding up mountains can be compared 
to riding against a head-wind. 
In case of cycling against the wind, generally air drag is 
the largest force that needs to be overcome in order to 
move forward. When cycling up a hill, when speeds are 
lower, gravity is the main force to overcome in order to 
move forward. Both types of forces can be expressed as 
a power (in Watts, where 1 W = 1 J s-1). By comparing 
the power required to cycle against the wind, to the 
power required to cycle up a hill, a relationship between 
the two will be established. 
Martin et al (1998) showed that almost 98% of the power 
and velocity during road cycling can effectively be 
predicted by a mathematical model. They also claimed 
that the missing 2% could be explained by friction in the 
drive chain. Therefore, using the same mathematical 
model as described by Martin et al (1998), it is possible 
to accurately relate cycling up a hill with cycling against 

a head-wind and define the `Incline-Equivalent' Wind 
Velocity. 
This paper is organized as follows; first the 
mathematical model that is used (section 2) is described, 
after which the incline is expressed in terms of an 
Incline-Equivalent Wind Velocity (section 3 and 4). 
Once the Incline-Equivalent Wind Velocity is defined, 
this is used to translate mountain profiles into wind 
profiles (section 5) and express the effects of `drafting' 
in terms of a reduced incline (section 6). This study is 
finalized with some concluding remarks (section 7). 
 
The Mathematical Model 
Two expressions are required in order to relate uphill 
cycling with a head wind; 1) an expression for the 
required power to cycle up a hill 𝑃hill	(with no wind) and, 
2) an expression for the power it takes to cycle against 
the wind 𝑃wind (with no incline). First, the mathematical 
model as presented by Martin et al (1998) is described 
for the total power 𝑃total required for cycling. Then the 
components related to uphill cycling 𝑃hill or cycling 
against the wind 𝑃wind	 are defined and equated, in order 
to obtain the incline equivalent wind velocity 𝑣$. Here	𝛼 
stands for incline. 
 
Total Power 
Total power is given by (Martin et al 1998) 
 
	𝑃total = 𝐸()* 𝑃AD + 𝑃WR + 𝑃WB + 𝑃RR + 𝑃PE + 𝑃KE . (1) 
 
Here 𝐸()*, is the chain efficiency, representing how 
efficient the power is transferred from the rider into 
forward motion after frictional losses in the chain drive. 
Throughout this study it is used that 𝐸()* = 0.98% 
(Martin et al 1998). Below, the expression for the 
different components on the right-hand side of Eq. (1) 
are provided. 
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Air-drag Power 
Air-drag Power 𝑃AD is due to friction of the air moving 
relative to the position of the cyclist (Fox et al 1995) 
.        
 	𝑃AD =

*
0
𝜌𝐶d𝐴𝑣a

0𝑣g              (2) 
 
Here 𝜌 is the density of air (kg m-3), 𝐶d is a unit less drag 
coefficient, 𝐴 is the frontal area (m2) of the rider and 
𝑣a = 𝑣g − 𝑣w is the net velocity (m s-1) of the bike with 
respect to the air. Hence, 𝑣a is made up of 𝑣g, which is 
the forward velocity (m s-1) of the bike relative to the 
ground, and 𝑣w, which is the wind velocity (m s-1) 
parallel to the direction in which the bike moves (same 
direction as 𝑣g). This means that when 𝑣w < 0, it 
represents a headwind. As a result, 𝑣a is the net velocity 
of the bike, with respect to the air. For example, if the 
wind is moving in the same direction as the bike, and has 
the same speed as the biker, such that 𝑣g = 𝑣w then the 
air around the bike is moving with the same speed as the 
biker. As a result, there is no air-friction as 𝑣a = 0. 
However, if there is a headwind (𝑣w < 0), then this will 
increase the net velocity of the bike with respect to the 
air. 
 
Wheel Rotation Power  
Wheel Rotation Power 𝑃WR is due to friction of the 
spokes of wheels moving through the air 
 
.  𝑃WR =

*
0
𝜌𝐹w𝑣a

0𝑣g  (3) 
 
Here 𝐹w is a factor (m2) associated with wheel rotation 
that represents the incremental drag area of the spokes. 
 
Rolling Resistance Power  
Rolling Resistance Power 𝑃RR of the tire moving over a 
surface. This factor depends on variables such as the 
roughness of the tire and the surface, the tire pressure 
and the weight of the rider and the bike. The 
characteristics of the tire and the surface are represented 
by a single non-dimensional rolling resistance 
coefficient 𝐶RR, leaving 
 
. (𝑃RR = 𝐶RR𝑚𝑔𝑣g cos tan)* 𝛼 				(4) 
 
Here 𝑔, is the gravitational acceleration, and 𝑚 =
𝑚rider + 𝑚bike is the total mass of the rider (𝑚rider) and 
the bike (𝑚bike). Finally, 𝛼 = 𝛥𝐻𝛥𝑆)* is the incline of 
the hill measured as the height difference (𝛥𝐻) over the 
horizontal distance (𝛥𝑆). 
 
 
Wheel Baring Power  
Wheel Baring Power 𝑃WB is the loss of power due to 
frictional loss in the wheel bearing. I use the same 
expression as Martin et al (1998), who got their values 
from a study by Dahn et al (1991) 
      
 𝑃WB = 𝑣g 𝑏* + 𝑏0𝑣g               (5) 

 
where 𝑏* = 9.1x10)0N, and 𝑏0 = 0.87x10)0N s m-1. 
 
Potential Energy Power  
Potential Energy Power 𝑃PE is a result of cycling up or 
down a hill. When cycling down a hill, gravity does 
work for you. This work can be expressed as a change in 
potential energy and depends on the mass	𝑚 and the 
incline 𝛼 
.      
     
 𝑃PE = 𝑚𝑔𝑣g sin tan)* 𝛼  (6) 
 
Kinetic Energy Power 
Potential Energy Power 𝑃KE is the result of acceleration. 
When a cyclist changes speed (acceleration), this 
changes the kinetic energy of the rider (+ bike) and that 
related to the speed of rotation of the wheel. The change 
in kinetic energy over time 𝛥𝑡 is given by 
.       

 𝑃KE =
*
0
𝑚 + 𝐼𝑟)0 JgKLJg

M)Jg
M

LN
 (7) 

 
Here 𝑟 is the outside radius of the tire (m), 𝐼 is the 
moment of inertia of the two wheels, and 𝛥𝑣g is the 
increase in speed over time 𝛥𝑡, starting from 𝑣g. Below, 
a brief look at the magnitude of the different components 
is presented. 
 
Comparing the different powers 
To compare the relative importance of the magnitude of 
the different Power-components that make up 𝑃total, 
values as given in Table 1 are used for an amateur rider 
(in which, 𝐴𝐶d is combined into one number), and Table 
2 for the other parameters. 
In the appendix of Martin et al (1998), a value of 𝐹w =
0.0044 is used (about 2 orders of magnitude smaller 
than 𝐴𝐶d), without further explanation. Greenwell et al 
(1995) and Tew and Sayers (1999) however, suggest that 
𝐹w is between 2% and 25% of that of 𝐴𝐶d, depending on 
the type of wheel that is used. This would lead to values 
possibly up to 𝐹w = 0.06. Here a fixed value of 𝐹w =
0.04 (Table 2) is used, about an order of magnitude 
larger than that suggested by Martin et al (1998), and in 
the range of possible values for both amateurs and 
professionals. Finally, to calculate the kinetic energy an 
acceleration of 5 km h-1, over 5 seconds (Table 2) is 
used. 
From the results (Fig. 1), it is clear that the power 
required for Potential and Kinetic Energy and to 
overcome the Air Drag, are the dominant, specifically 
for larger velocities. Rolling friction, Wheel Bearing 
friction and wheel rotation play a minor role. As I will 
consider a cyclist at constant speeds (𝑃KE = 0), the  
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dominant balance to convert uphill cycling into cycling 

Table 1. For different types of riders (1st column), different values for 𝑨𝑪d (2nd column) and the total mass (3rd column) are 
given. The 𝑨𝑪d  values are mainly based on Wilson (2004). This results in different `drag' velocities (4th column). 

Rider Type 𝑨𝑪d (m2) 𝑚bike + 	𝑚rider = 𝒎	(kg)  𝒗d (m s-1) 
Commuter 0.65 20 + 80 = 100 50.2 
Amateur 0.4 10 + 75 = 85 55.6 

Prof Time Trial 0.28 7 + 70 = 77 71.0 
 
Table 2. To provide a bulk estimate for comparison of the different components of 𝑷total  (Fig. 1), the above values (2nd 
column) for the different variables (1st column) are used. The source is provided in the 3rd column, where G95, M98 and 
T99 stand for Greenwell et al (1995), Martin et al (1998) and Tew and Sayers (1999), respectively. 

Variable Symbol Value Source 

Density 𝜌 1.20 kg m-3 Dry air, 𝑇=20 oC, P=101.325 kPa 

Gravity g 9.81 m s-1  

Drag Spokes 𝐹w 0.04 m2 G95 & T99 

Rolling Resistance 𝐶RR 0.0032 M98 

Velocity Biker 𝑣g 25 km h-1  

Velocity Head-Wind 𝑣w -30 km h-1  

Radius r 0.660 m  Tire (2.5 cm) + Wheel (63.5 cm) 

Moment of Inertia I 0.14 kg m2 M98 

Incline α 0.05 (5 %)  

Acceleration 𝛥𝑣g/𝛥t 0.278 m s-2 5 km h-1 per 5 s 

 
 

 

Figure 1. The components of 𝑷total , given by the power required for Kinetic Energy 𝑷KE, Air Drag	𝑷AD, Potential Energy 
𝑷PE, Rolling Resistance 𝑷RR, Wheel Rotation 𝑷WR, and Wheel Baring 𝑷WB. 
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dominant balance to convert uphill cycling into cycling 
against the wind, will be between the power related to 
the change in potential energy (𝑃PE) and that to 
overcome air drag (𝑃AD). 
 
Translating uphill cycling into a headwind. 
Here an expression that compares riding up a hill 
(without wind) to riding against the wind (on a flat 
surface) is derived. It is assumed that the rider has a 
constant speed such that 𝑃KE = 0 (black line in Fig. 1). 
Using Eq. (1), the expression for cycling against the 
wind (𝑣w ≠ 0), but on a flat surface (𝛼 = 0), is given by: 
 
𝑃wind = 𝑣g𝐸c

)* *
0
𝜌 𝐶d𝐴 + 𝐹w 𝑣g − 𝑣w

0
+ 𝐶RR𝑚𝑔 +

𝑏* + 𝑣g𝑏0 .    (8) 
 
The power to cycle without wind (𝑣w = 0), but up a hill 
(𝛼 ≠ 0) is given by: 
𝑃hill = 𝑣g𝐸c

)* *

0
𝜌 𝐶d𝐴 + 𝐹w 𝑣g

0 + 𝐶RR𝑚𝑔 cos tan)* 𝛼 + 𝑏* +

𝑣g𝑏0 + 𝑚𝑔 sin tan)* 𝛼       (9) 
 
To be able to compare the two, I equate them (𝑃hill =
𝑃wind), leaving: 
 
𝑃wind − 𝑃hill = 𝑣g

\]

ĉJd
M 𝑣g − 𝑣w

0
− 𝑣g

0 − 𝑣d
0𝑓 𝛼 = 0 (10)  

 
To ease notation, it is used that 𝑓 𝛼 = 𝐶RR 1 −
cos tan)* 𝛼 + sin tan)* 𝛼 , and the `drag 
velocity' is defined as  
     
 𝑣d =

0\]
` adbKcw

   (11) 
 
Note that 𝑣d ≥ 0 and depends on the coefficients related 
to different types of bikers. From Eq. (10), it shows that 
one solution is obtained when  𝑣g = 0. A more 
interesting solution is obtained when the part within the 
brackets is zero, leaving 𝑣a

0 = 𝑣g − 𝑣w
0
= 𝑣d

0𝑓 𝛼 +
𝑣g
0. From which it can be worked out that 𝑣w

0 − 2𝑣g𝑣w −
𝑣d
0𝑓 𝛼 = 0. Using the Quadratic formula 𝑥 = −𝑏 ±
𝑏0 − 4𝑎𝑐 2𝑎 )*, with x = 𝑣w, 𝑎 = 1, 𝑏 = −2𝑣g, and 

𝑐 = 	−𝑣d
0𝑓 𝛼 , the following expression is obtained: 

     

 𝑣w = 𝑣g 	± 𝑣g
0 + 	𝑣d

0𝑓 𝛼  (12) 

 
Eq. (12) provides an expression for the wind velocity 𝑣w 
as a function of the ground velocity of the biker 𝑣g, the 
drag velocity 𝑣d, and the slope of the hill α. 
 
The Incline-Equivalent Wind Velocity 
Here I will define the ̀ Incline-Equivalent Wind Velocity' 
𝑣α, which is defined as the velocity the wind must have, 
in order to push a biker up the hill, as fast as it rolls down 
the hill, such that it does not move and 𝑣g = 0. The 
Incline-Equivalent Wind Velocity is given by inserting 
𝑣g = 0 into Eq. (12) leaving: 

for 𝛼 < 0.1     
 𝑣α = 𝑣d 𝑓 𝛼 ≈ 𝑣d 𝛼,   (13) 
 
For the second (approximated) part, it is used that 
sin tan)* 𝛼 ≈ 𝛼, and cos tan)* 𝛼 ≈ 1, for 𝛼 <
0.1. The Incline-Equivalent Wind Velocity 𝑣α (Fig. 2) is 
the power a rider requires to provide in order to 
overcome a wind velocity that is exactly the same as the 
power a rider needs to overcome when riding up a hill 
with a certain incline 𝛼, assuming that in both cases the 
rider is in exact balance (no forward motion, i.e. 𝑣g = 0). 
For example, when a cyclist is rolling down a hill 
(without cycling) with incline 𝛼 and has a headwind of 
𝑣α,	then the rider is in an exact stand still as the gravity 
pulls as hard as the wind provides a drag. 
 
Commuters have a larger total weight and are pulled 
down harder by gravity then a professional cyclist, while 
the professionals have very small 𝐶d𝐴 coefficient 
compared to the commuter (Table 1). This means, the 
wind has less `grip' on the professional, then on the 
commuter. As a result, the wind must blow harder to 
keep a professional cyclist at zero velocity, then it needs 
to blow against a commuter. 
As a result, for a given incline, a professional athlete 
must train against a higher wind then a commuter, in 
order to exert the same power. That is why the lower 
boundary of the yellow area (Fig. 2) represents the 
Incline-Equivalent Wind Velocity for a commuter, while 
the upper boundary is the Incline-Equivalent Wind 
Velocity for a time trail professional athlete.  

 
A windy climb of the Mont Ventoux 
Using Eq. (13), the profile of the incline of a mountain 
can be translated into the Incline-Equivalent Wind 
Velocity profile. There is no better example to take than 
the Mont Ventoux, or `windy mountain'. The Mont 
Ventoux is a famous mountain in France, often included 

 

Figure 2. The Incline-Equivalent Wind Velocity 𝐯α ,, as a function 
of the incline (100 x 𝛂 in %). The yellow range provides the wind 
velocity that corresponds with the type of cyclist. The y-axis 
shows the wind speed in m s-1 (left) and km h-1 (right). The 
background color shading corresponds to the wind speed of the 
Beaufort Scale (1-12), which then changes into the Saffir-
Simpson scale for Hurricanes (1-5). 



J Sci Cycling. Vol. 6(1), 32-37 Groeskamp 
	
	

Page 36 
 

in big cycling races such as the Tour de France and the 
Critérium du Dauphiné. The Mont Ventoux has an 
average incline of about 7.3%, with some parts being 
much steeper (Figure 3). 
Using Eq. (13), the Incline-Equivalent Wind Velocity 
profile of the uphill component of the Mont Ventoux is 
calculated (Fig. 4). As Climbing the Mont Ventoux is 
not done on time trial bikes, I have used the values for 
the amateur rider (Table 2). Cycling up the Mont 
Ventoux is equivalent to cycling against 30 to 65 km h-1 
winds, averaging around 56 km h-1. 
 
For comparison, the fastest time recorded up Mont 
Ventoux is that by Iban Mayo, in the time trail of Stage 
4 of the Critérium du Dauphiné in 2004 (Maloney 
2004,). It took him just under 56 minutes from Bédoin 
to the top, on a calm day, leaving an average pace of 23.2 
km h-1. To mimic that ride, you need to ride against 56 
km h-1 head-winds for an hour, with an average of 23.2 
km h-1. 
 
Drafting as Incline 
Drafting (or slip-streaming) is a technique in which two 
or more cyclists align in such a way that the lead 
objects slipstream is exploited, reducing the drag for 
the followers. Drafting can reduce the power required 
to cycle with the same speed, up to 40% for well-
trained cyclist (Kyle 1979; Belloli et al 2016; Blocken 
et al 2013). Here this effect is recalculated in terms of a 
reduced `incline'. 
First rewrite Eq. (12) such that it expresses 𝑣w as a 
function of the power input of a rider 𝑃wind, leaving: 
      
 𝑣w = 𝑣g − 𝑣d 𝑐1 + 𝑐2𝑃wind (14) 
 
where 𝑐1 = 	−	 𝑃WB𝑃])* + 𝐶oo , and 𝑐2 = 	𝐸c𝑃])*, and 
𝑃g = 𝑚𝑔𝑣g. The front rider has ground velocity 𝑣g =
𝑣]pqrst, and cycles against a headwind of 𝑣w = 𝑣upqrst 
(Table 3). For the second rider, use that	𝑣vwxyrsz = 𝑣vpqrst 
and because of the drafting effect, 𝑃{|szwxyrsz = 𝜀𝑃{|szpqrst. 
Here 𝜀 < 1, and represents the percentage of power that 
the second rider exerts, compared to the front rider, as a 
result of drafting. Using Eq. (14) this can be recalculated 
into a wind speed, 
 ,    

 𝑣{wxyrsz = 𝑣g − 𝑣d 𝑐1 + 𝜀𝑐2𝑃{|szpqrst   (15) 

 
where 𝑣{pqrst > 𝑣{wxyrsz. Now, both wind speeds can be 
recalculated as the Headwind-Equivalent Incline 
(𝛼{|sz), i.e. the reverse of the Incline-Equivalent Wind 
Velocity.  
 
In order to do so, the Incline-Equivalent Wind Velocity 
𝑣α is rewritten as Headwind-Equivalent Incline 𝛼{|sz, 
using both Eq. (13) and 𝑓 𝛼 = 𝐶RR 1 −
cos tan)* 𝛼 + sin tan)* 𝛼 , leaving. 
      

 𝑣�0 = 	 𝑣z0 𝐶oo + 	
$)a��
*K$M

  (16) 

 
Here the relationships cos tan)* 𝛼 = 1 + 𝛼0

)*
, 

and tan tan)* 𝛼 = 𝛼 are used. I now apply that 
𝐶oo0 =	≪ 1, to rewrite Eq. (16) into 0 = 1 − 𝑐�0 𝛼0 −
2𝐶oo𝛼 + 𝐶��0 − 𝑐�0, with 

𝑣�0 =
J�
M

J�M
− 𝐶oo.      

      
     (17) 
Using the Quadratic formula, with 𝑥 = 𝛼, 𝑎 = 	 1 −
𝑐�0 , 𝑏 = 	−2𝐶oo, and 𝑐 = 𝐶��0 − 𝑐�0, while taking the 
positive root I obtain: 
 

 

Figure 3. The Mont Ventoux. The inset (top left) provides a top-view of the 
route, with the uphill part colored in red. The start and end are indicated with 
a green and red dot, respectively, in both the inset and the profile. The x-axis 
shows the distance cycled, while the y-axis show the height. The different 
colors show the incline of the slope (%) for both the uphill (red) and downhill 
(blue) parts. In the remainder of this study, the focus is on the uphill part. 

 

 

Figure 4. The climb of the Mont Ventoux, from Bédoin to the top. The climb is 
divided in a couple of section, for which the average gradient is shown in both 
color and numbers. The Incline-Equivalent Wind Velocity 𝐯α is shown in color 
in km h-1 and provided in `Beaufort' and m s-1 as text. 
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𝛼{|sz ≈
J�M

J�
M *)(�M

= Jα

Jd
��
����

�

��
M��

M )0a��

≈ 	 J�M

J�
�KJ��

																							(18) 

 
Here it is used that 2𝐶oo ≪ 𝑣z� − 𝑣�� 𝑣z0𝑣�0 )*, for 
most situation. This means that, for a certain power input 
by the rider to cycle against the wind, I can calculate how 
this would compare to cycling up the hill. As the cyclist 
are drafting, they have the same ground velocity 𝑣g, but 
a lower relative wind speed, and therefore a lower 𝛼{|sz. 
Hence, the effect of drafting can be expressed as 
climbing up, with a reduced slope (Table 3). For the 
example provided, it shows that the front rider is cycling 
`up a hill' with slope 𝛼{|sz = 4.5%, while the second 
and third rider provide an effort comparable to riding up 
a slope 𝛼{|sz = 2.6% and 𝛼{|sz = 1.3%, respectively. 
 

Conclusions 
The main result of this study, is the derivation of the 
Incline-Equivalent Wind Velocity 𝑣α (Eq. 13). This is 
the wind velocity a cyclist has to overcome on a flat 
road, to equal the power spend to cycle up a certain 
incline, without a headwind. To obtain this 
expression, I equated the power it takes to ride against 
the wind on a flat surface, and up an incline without 
any wind. The dominant balance is between that of 
the power related to changes in the rider’s potential 
energy and overcoming aerodynamic drag. As a 
result, 𝑣α, is a function of the incline 𝛼, and the drag 
velocity 𝑣d, which depends on the drag coefficient, 
mass and frontal area of the rider and the bike. 
Using the Incline-Equivalent Wind Velocity, the 
profile on the Mont Ventoux was calculate in terms of 
wind velocity, varying between 30 to 65 km h-1 winds, 
averaging around 56 km h-1 (7.3 % incline), for an 
amateur rider. Also, defined here is the Headwind-
Equivalent Incline 𝛼{|sz (opposite of 𝑣α) and 
recalculated the effect of drafting on power input, as 
a decline in 𝛼{|sz. 
The power exerted by a rider is translated into forward 
motion through the inertial load on the crank. For the 
same power exerted by the rider the inertial load on 
the crank depends on many variables, including the 
rider’s position with respect to the crank (Houtz and 
Fischer 1959; Wozniak Timmer (1991); Bertucci et 
al. 2005, 2012). This position, and therefore the 
forward motion of the rider, changes with incline. 
This effect is not included in this study and is left as 
future work. In addition, the change in position with 
respect to the crank between riding uphill or on an flat 
road, may also result in a different load on muscles 
and tendons. The study presented here is purely 
mathematics and does not take into account such 
biomechanics. 
Using the results of this study for training purposes is 
possible within the limitation mentioned above. For 
example, one can now translate a training with a head-
wind into a ride up a mountain. However, in order to 
also train the difference in the biomechanical load on 
muscles and tendons between riding uphill or on a flat 

road, one may have to alter the position of the rider 
on the bike, with respect to the crank. 
A small anemometer on a bike would provide 𝑣a =
𝑣g − 𝑣w, i.e. the net velocity of the bike with respect 
to the air. In combination with a speedometer 
providing 𝑣g, this can be used to calculate 𝑣w. The 
resulting 𝑣w can be inserted into Eq. (18) to obtain 
𝛼{|sz. Hence, bikes equipped with both instruments 
have the ability to output 𝑣g, 𝑣w, and 𝛼{|sz, which can 
be used as a training diagnostic. 
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