Journail of Science and Cycling

 \cdots

Editors: Mikel Zabala (PhD)

Validity of the Wahoo KICKR Power Trainer and Reliability of a 4 km Cycle Time Trial

Emma K Zadow ${ }^{1} \boxtimes$, James W Fell ${ }^{1}$, Stuart T Smith ${ }^{1}$, Cecilia M Shing ${ }^{1}$

Abstract

Purpose: To assess the validity of power and the reliability of a 4 km cycle time trial (TT) using the Wahoo KICKR Power Trainer.

Methods: The Wahoo KICKR power output was assessed using a dynamic calibration rig (DCR) over power outputs of $100-600 \mathrm{~W}$ at cadences of 80,90 and 100 rpm . Twelve trained male cyclists (mean \pm SD; age: 34.0 ± 6.5 years, height: $178.4 \pm 6.2 \mathrm{~cm}$, body mass: $76.8 \pm 9.6 \mathrm{~kg}$) completed three 4 km TTs on the Wahoo KICKR, each separated by a minimum of two and a maximum of three days. Mean power (W), cadence (rpm), speed (km.h-1), heart rate (bpm) and total time (s) were recorded for each TT while ratings of effort ($0-10$) and sessional ratings of perceived exertion (6-20) were collected immediately and 10 mins post each TT.

Results: Bias for differences in power (\%) recorded by the Wahoo KICKR to the DCR was 0.8% (95% LOA -4.0$5.6 \%$) (Figure 1). Average ICC between trials (2-1, 3-2, 3-1) for power was 0.95 ($95 \% \mathrm{Cl} 0.89-0.98$), cadence 0.80 ($95 \% \mathrm{Cl} 0.60-0.92$), speed $0.70(95 \% \mathrm{Cl} 0.46-0.88)$, heart rate $0.93(95 \% \mathrm{Cl} 0.85-0.98)$ and total time 0.75 ($95 \% \mathrm{Cl}$ $0.53-0.90$). Coefficient of variation was $2.9 \%, 4.5 \%, 3.7 \%, 1.5 \%, 3.6 \%$ for power, cadence, speed, heart rate and total time, respectively (Table 2).

Results: slgA concentrations ($\mu \mathrm{g} \cdot \mathrm{ml}^{-}$) before and after the treadmill were [mean 595, $\mathrm{s}=64.6$ and mean 841, $\mathrm{s}=$ 76.3] and before and after the bike were [mean 593.9, $s=51.1$ and $778.8 \mathrm{~s}=99.3$]. slgA secretion rates ($\mu \mathrm{g} . \mathrm{min}^{-1}$) before and after the treadmill were [mean 396.2, $\mathrm{s}=73.7$ and $223 \mathrm{~s}=99.6$] and before and after the bike were [mean 284.1, $s=74.3$ and 216.6, $s=29.5$]. Saliva flow rates (μ l. min^{-1}) before and after the treadmill were [mean $657.8, \mathrm{~s}=92.2$ and 289.3, $\mathrm{s}=56.6$] and before and after the bike were [mean 487.2, $\mathrm{s}=123.3$ and $319.5, \mathrm{~s}=66.5$]. The results indicated that slgA secretion rate ($P<0.028$) and saliva flow rate ($P<0.01$) were significantly decreased following the 2 hour treadmill protocol but not the 2 hour bike protocol. slgA concentration was also significantly elevated following the treadmill ($\mathrm{P}<0.01$), with no significant increase following the bike protocol.

Conclusion: These results suggest that when compared to a DCR, the Wahoo KICKR Power Trainer displays a small mean bias across all measures of power, with caution to be applied at the lower ranges of power output (<200 W). When completed on the Wahoo KICKR Power Trainer, a 4 km TT in trained cyclists is highly reproducible.

Figure 1. Bland-Altman plot of the differences in mean power output as a (\%) between the dynamic calibration rig and the Wahoo KICKR Power Trainer at) 80 rpm ,) 90 rpm ,) 100 rpm . Solid line represents the bias. Dashed lines represents 95% limits of agreement.

Table 1. Mean within -participant intraclass correlation coefficients (ICC) and typical error as a coefficient of variation (\%) between trials. Data are presented as mean ($95 \% \mathrm{CI}$).

	Mean power (W)	Mean cadence (rpm)	Mean speed (km/h)	Heart rate (bpm) Total Time (s)
$\operatorname{ICC}\left({ }^{(2 \text { to 1) }}\right.$	0.97	0.78	0.36	0.97	0.51
	(0.91-0.99)	(0.36-0.93)	(-0.24-0.76)	(0.89-0.99)	(-0.05-0.83)
$\operatorname{ICC}\left({ }^{3 \text { to } 2)}\right.$	0.92	0.87	0.70	0.90	0.77
	(0.75-0.98)	(0.58-0.96)	(0.23-0.90)	(0.68-0.97)	(0.38-0.93)
	0.80	0.34	0.49	0.75	0.54
$I C C^{(3 \text { to 1) }}$	(0.45-0.94)	(-0.29-0.77)	(-0.08-0.82)	(0.34-0.29)	(-0.02-0.84)
Mean	0.95	0.80	0.70	0.93	0.75
	(0.89-0.98)	(0.60-0.92)	(0.46-0.88)	(0.85-0.98)	(0.53-0.90)
$\mathrm{CV}^{(2 \text { to 1) }}$	2.4	4.9	4.5	1.1	4.7
	(1.7-4.0)	(3.4-8.8)	(3.1-7.7)	(0.8-1.8)	(3.3-8.2)
$C V^{(3 \text { to } 2)}$	3.8	3.5	3.9	1.9	3.6
	(2.7-6.5)	(2.4-6.2)	(2.7-6.7)	(1.3-3.2)	(2.6-6.2)
$\mathrm{CV}^{(3 \text { to 1) }}$	3.8	6.8	4.4	2.2	4.0
	(2.7-6.5)	(4.7-12.2)	(3.1-7.5)	(1.6-3.8)	(2.8-6.9)
Mean	2.9	4.5	3.7	1.5	3.6
	(2.4-3.8)	(3.6-6.1)	(3.0-4.8)	(1.2-2.0)	(2.9-4.7)

Contact email emma.zadow@utas.edu.au (E. Zadow)
${ }^{1}$ University of Tasmania, Department of Health Sciences

