BOOK OF ABSTRACTS Open Access ## Within-individual haemoglobin variation and the athlete biological passport: a longitudinal investigation of 13,887 haemoglobin concentration readings in elite athletes LM Lobigs¹, EJ Knight², YO Schumacher¹ and CJ Gore² ## **Abstract** The Athlete Biological Passport (ABP), introduced by the Union Cycliste Internationale (UCI) in 2008, has proven a critical tool for the reduction of doping cases. The ABP estimates individual reference ranges for haemoglobin concentration ([Hb]) and percentage reticulocytes from predetermined population mean, between- and within-individual variances. Here, we aim to verify the previously published estimate for within-individual variance of [Hb] (39.86 g2/L2) and determine whether sex-, sport- or season-specific values are required. Our reference population contains 7,723 male (mean \pm s, 22.3 \pm 4.6 years of age) and 6,164 female (21.6 \pm 4.3 years of age) athlete observations from 49 sports. [Hb] was calculated using one of three cytometers; Bayer-H3 (1997 – 1999, n = 4,554), ADVIA-120 (1999 – 2010, n = 8,636) and Sysmex XT-2000i (2010 – 2012, n = 697). Linear mixed models were fitted with [Hb] as the response variable, analysis system (H3, ADVIA, Sysmex), sex (male, female), sport (power endurance, endurance, team, skill, disabled and non-athletes), season (summer, winter) the fixed effects and athlete the random effect. The final model contained an exponential correlation structure for the within-individual variance and allowed different within-individual variances for each sport. Within-individual [Hb] variance was spatially correlated up to 36.5 days (95% CI 28.3-47.1) between measures. The proportion of within-individual variance that is analytical in origin was estimated as 0.54 (95% CI 0.50-0.60). Within-individual [Hb] variance did not differ between sexes (37.54 males, 37.79 females g2/L2) but was significantly less for power endurance, disabled and non-athletes than for endurance and team sports athletes and significantly higher during the hot months. In conclusion, the current estimate of within-individual [Hb] variance is accurate and no new evidence was found to justify adjusting this value. Contact email: <u>louisa.lobigs@aspetar.com</u> (LB. Lobigs) Received: 1 May 2014. Accepted: 1 June 2014. ¹ Aspetar Sports Medicine and Orthopedic Hospital, Doha, Qatar ² Australian Institute of Sport, Canberra, Australia